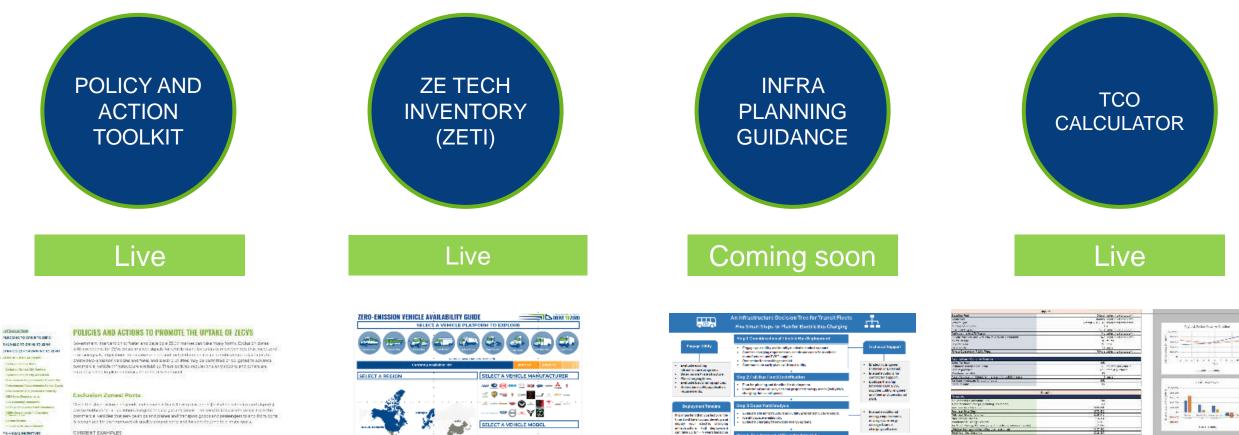
2020 Webinar Series

High-Efficiency Truck Users Forum

The Forum for Action in High-Efficiency Commercial Vehicles

Steven Sokolsky Program Manager



AGENDA

- CALSTART commercial vehicle activity update
- Panel Discussion: identifying common issues for vehicle electrification between the military and commercial industry
 - Dr. Larry Toomey, U.S. Army GVSC
 - Larry Larimer, U.S. Army Futures and Concepts Center
 - Jason Gies, Navistar, Inc.
 - Sean Gouda, DTE Energy
- HTUF Microgrid Working Group update
- Upcoming webinars

Global Drive to Zero: Tools to Drive Market Success

IN DRVELOPMENT

HOLE PERSON CANAL DECIDENT VALUE

OWNERS IN COMPANY

OLICIES, ACTIONS, AND INCLUSION


 The Start A., and S. of New York and Science Responses and a method of the network How even the New York and Science Responses and the second science of the second rock carty a real in the agency is carrier stand to solve thing its manual these and real to serve a metalonic galaxies

1180. Depend of Pollenkers per Mehricanes, will have be after weight and interpretent with education. when short the part ware a to any ridg one or remain by Abde Gauge Rep.

	Five Smart Steps to Planfor Electric Bus Charging	Ĩ.
Tagay URA	 Step 1. Can Alersa have of 1 incluine National approximation. Papage power 10 and 10 mBy evolution included approximation of the step of	- Technical Napport
 Evaluation contains indicating contains of a spinores. Orthomatic for the shared core. Manufacturing informs. Evaluation to a spinores. Standard contains a spinores. Standard contains a spinores. 	Connection and plan of his back to the Sep 21 of the Time Underfalled for The to planting and dealer for deplayment The top back grant dealer for deplayment The top back grant dealer for a space grant dealer (block the opposite mode grant)	 Bit device important interview or interview control car important for control car support. Evaluation support interview support important interview support interview.
Deployment Timeline	Step 2 Deport Yard Analysis	448.
Recomposition distribution feedor in the lines direct take taylow, development deckay recommendation, characteris infrastructures. And deployment constants of the 1- Annual based parts	Schull register rendelitiely. Schuller in Charge Charles and register room.	 Invariant work block and energy a map invariant is more types and an any strong type of a series share groups of a series
First war and service symplex first britten before a based on depleyered lettly misses. FLAMMENY/MEDIT-5 3-11 Months		Connect CAL, CTA TTPse Influent set are planar up a considered www.patient.arg
DEVELOPMENT: Development in generation and Communities and Communities and Education DEPE Communities Provide Provide La Minimum	Step 3: Development of Cleanno Serve de Plan - Detroinverse en en source development d'activité - Marine Marine de la development de la development - Marine Marine de la development de la development - Determine caracteristications de la development de la development - Determine caracteristications de la development de la development de	· Olizin provide

DRIVE TO ZERO

Resources for Transformation: https://globaldrivetozero.org/tools/

CLEAN TRUCK GOALS EXPANDING TO 15 STATES

The New York Times

States Set Goals to Jump-Start Transition to Electric Trucks

By The Associated Press

July 19, 2020

f y 🛚 A

ALBANY, N.Y. — A coalition of states is following California's lead in setting goals to jump-start a transition to electric-powered trucks, vans and buses in order to reduce greenhouse gas emissions and improve air quality for communities choked by diesel fumes.

The 15 states, plus Washington, D.C., announced last week that they've agreed to develop an action plan aimed at having 100% of all new medium- and heavy-duty vehicles sold be zero-emission by 2050, with an interim target of 30% zero-emission vehicle sales by 2030.

"This is a really big deal in sending a powerful signal to industry with directions on where we need to be going with transportation," said Bill Van Amburg, executive vice president of CALSTART, a nonprofit consortium focused on building a clean transportation industry. "You can now justify further investment to develop more products."

Details are yet to be worked out. One option would be to adopt the mandate California's Air Resources Board announced in June requiring that all new commercial trucks and vans purchased must be zero-emission by 2045, with milestones along the way. Or the states could focus more on subsidies and incentives, as well as investment in charging infrastructure.

NATIONAL Z.E. TRUCK COALITION

National Coalition of Heavy Truck Leaders Calls for Major Federal Role, Investments to Support U.S. Leadership in Zero-Emission Trucks

For Immediate Release

For More Information Contact

Katharine Burnham

Kburnham@calstart.org; 626-344-6863

The National Zero-Emission Truck (ZET) Coalition, representing America's major heavy truck makers, innovators, suppliers and key stakeholders, has <u>released its priority federal recommendations</u>to support this critical sector. The recommendations call for an increased federal role and funding to ensure U.S. tech leadership in this clean air technology, including a national point-of-sale incentive program to help drive the near-term production of zero-emission medium- and heavy-duty vehicles (MHDVs), including clean trucks and buses, in the United States.

The Coalition, organized by clean transportation industry organization CALSTART, is also urging that federal funding be targeted at commercial zero-emission vehicle charging and refueling infrastructure and that federal innovation investments be increased for zero-emission technologies to secure U.S. competitiveness over the next decade.

"America has the power to lead in the expanding, zero-emission truck market," said Bill Van Amburg, Executive Vice President of CALSTART. "But we must take an active role. Other nations are investing aggressively. Our industry coalition believes a strong federal partnership can create jobs that also clean our nation's air, foster innovation and solidify American competitiveness in this global field."

High-tech, zero-emission commercial vehicles are in development or early production in most weight classes and global demand is on the <u>rise</u>. For the U.S. to remain competitive and to jumpstart zero-emission truck production in this time of economic crisis, the ZET Coalition recommends targeting \$2+ billion for point-of-sale purchase incentives. This structure has a proven track record at the state level of helping fleets quickly procure zero-emission commercial vehicles and has proven successful in jumpstarting domestic clean MHDV manufacturing. While there are tax credits for zero-emission cars, the U.S. currently does not provide direct incentive support for the production of larger clean commercial vehicles – all the more critical with these vehicles' outsized impact on current transportation emissions. The recommended investment could transform the domestic ZET industry, build a strong domestic supply.

Coalition members include:

ABB * ADOMANI * Arrival * Bollinger Motors * BYD * CALSTART * Chanje * ChargePoint * Cummins * Daimler * Eaton * Environmental Defense Fund * eNow * Lion Electric * Mack Trucks * Morgan Olson * Motiv Power Systems * Navistar * Nikola Corporation * Odyne Systems * PACCAR * Proterra * Revolv * Rivian * SDG&E * South Coast AQMD * Tesla * TransPower * Viatec * Volvo Trucks

PANEL DISCUSSION

Dr. Laurence Toomey Branch Chief, Energy Storage Team U.S. Army Ground Vehicle Systems Center

Mr. Larry Larimer Director, Futures Integration Directorate, Futures and Concepts Center U.S. Army Futures Command

Mr. Jason Gies Director of Business Development, NEXT E-Mobility Solutions Navistar, Inc.

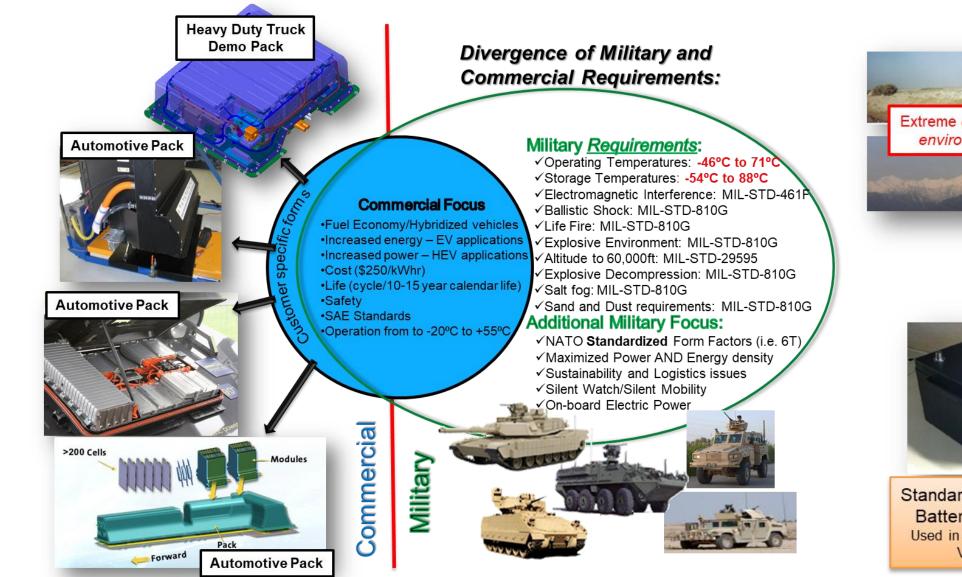
Mr. Sean Gouda Manager, Electrification Business Development DTE Energy

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – GROUND VEHICLE SYSTEMS CENTER

Combat Vehicle Energy Storage

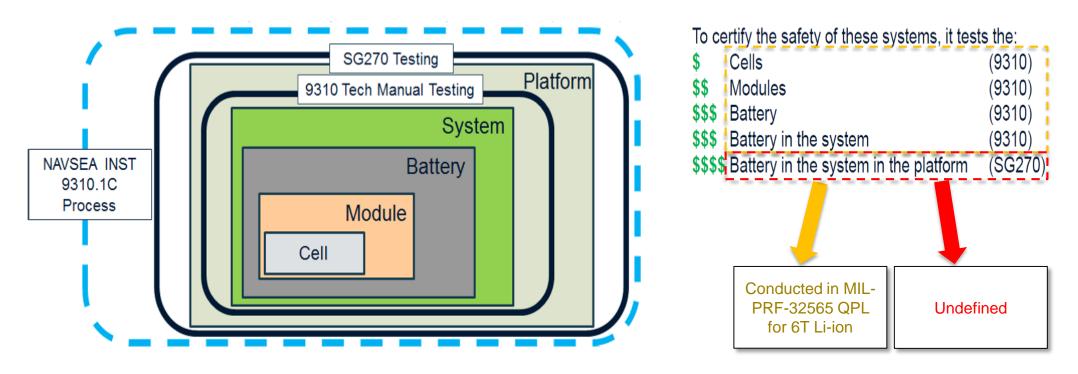
Laurence M. Toomey, Ph.D

Energy Storage Branch Chief


CCDC GVSC

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC #: 3634

COMMERCIAL VS. MILITARY REQUIREMENTS


Standardized Military Batteries (i.e. 6T) Used in 95% of Military Vehicles

OTHER CONSIDERATIONS: THE NAVY'S SAFETY TESTING

Challenge: The primary challenge associated with fielding Li-ion batteries on military vehicles is meeting the Navy safety certification requirements to allow the Naval transportation of Li-ion battery based energy storage systems. Currently we are working with multiple stakeholders (including Navy, DOD, PM stakeholders and battery manufactures) to define the required testing that allow for Naval transportation of Li-ion 6T batteries. Based on this approach, we will seek to gain approval to for Naval transportation of Li-ion 6T batteries. (This approach will also be implemented as we develop modular high voltage battery systems to support advanced platform electrification.)

Several battery containment concepts tested with ballistic penetration

- Used two common military rifle calibers (AP and API types).
- Fire containment bags, composite box, vented aluminum box (uncoated, and ceramic-based spray coated on inside).

Prototype Test Battery (HSL7):

Energy	Needed:					ns)	\frown		-						
(k\	Whr)	5	10	15	20	25	30	35	40	45 🤇	50	55	60	65	70
	50	57	114	171	228	285	342	399	456	513	5 '0	626	683	740	797
	100	114	228	342	456	570	683	797	911	1025	1139	1253	1367	1481	1595
iles	150	171	342	513	683	854	1025	1196	1367	1538	1709	1879	2050	2221	2392
Ξ	200	228	456	683	911	1139	1367	1595	1822	2050	22 <mark>7</mark> 8	2506	2734	2961	3189
	250	285	570	854	1139	1424	1709	1993	2278	2563	2248	3132	3417	3702	3987
(300	542	005	1025	1307	1709	2050	2392	2/34	50 5	3417	3759	4100	4442	4784

Battery Size – Required energy needed as a function of vehicle weight and range:

Assumption: 50 Ton all-electric tracked vehicle: 11.5kWhr/mile

ESS Capacity: 3.42 MWhr

30 minute Recharge Power needed (as a function of vehicle weight and range):

30 min.	Recharge		Vehicle Weight (Tons)												
Power (kW)		5	10	15	20	25	30	35	40	45	50) 55	60	65	70
	50	114	228	342	456	570	683	797	911	1025	11	39 1253	1367	1481	1595
	100	228	456	683	911	1139	1367	1595	1822	2050	227	250 6	2734	2961	3189
iles	150	342	683	1025	1367	1709	2050	2392	2734	3075	341	L7 3759	4100	4442	4784
Ä	200	456	911	1367	1822	2278	2734	3189	3645	4100	455	56 5012	5467	5923	6378
	250	570	1139	1709	2278	2848	3417	3987	4556	5126	50	6265	6834	7404	7973
	300	683	1367	2050	2734	3417	4100	4784	5467	6151	683	84 7517	8201	8884	9568

Assumption: Currently largest size TQG is 840kW generator:

Battery Size Requirements as function of Vehicle Weight and Range

ESS Vol:

~600ft³ (~17k liters)

Battery Weight (lbs) (as a function of vehicle weight and range):

Batter	y Wt **	Vt ** Vehicle Weight (Tons)													
(lbs)		5	10	15	20	25	30	35	40	45	50	55	60	65	70
	50	1004	2009	3013	4018	5022	6026	7031	8035	9040	10044	11049	12053	13057	14062
	100	2009	4018	6026	8035	10044	12053	14062	16071	18079	20088	22097	24106	26115	28123
iles	150	3013	6026	9040	12053	15066	18079	21093	24106	27119	30132	33146	36159	39172	42185
Ξ	200	4018	8035	12053	16071	20088	24106	28123	32141	36159	40176	44194	48212	52229	56247
	250	5022	10044	15066	20088	25110	30132	35154	40176	45198	50220	55243	60265	65287	70309
	300	6026	12053	18079	24106	30132	36159	42185	48212	54238	60265	66291	72317	78344	84370

Assumption: Vehicle weight includes base vehicle and battery weight (i.e. 35 ton vehicle would include vehicle plus ~7000lb battery for 50 mile range) ESS weight:

Battery Volume (ft³)(as a function of vehicle weight and range):

~60k lbs (~30 tons) Vehicle Weight (Tons) Battery vol (ft3) Miles

Assumption: Available battery volume 225ft³ – color code based on that volume restriction

Battery Estimates:

Specific Energy (Current SOA): 125Whr/kg [56.7Whr/lbs]

Specific Power (Current SOA): 200Whr/L [5,660Wh/ft³] {SOA EV battery reference: 125Whr/kg and ~240Whr/l (Militarized battery will be slightly lower to meet shock and vib/environmental requirements)}

DISTRIBUTION A. See first page.

Battery Size Requirements as function of Vehicle Weight and Range – "Beyond" Li-ion ESS

Battery Weight (lbs) (as a function of vehicle weight and range):

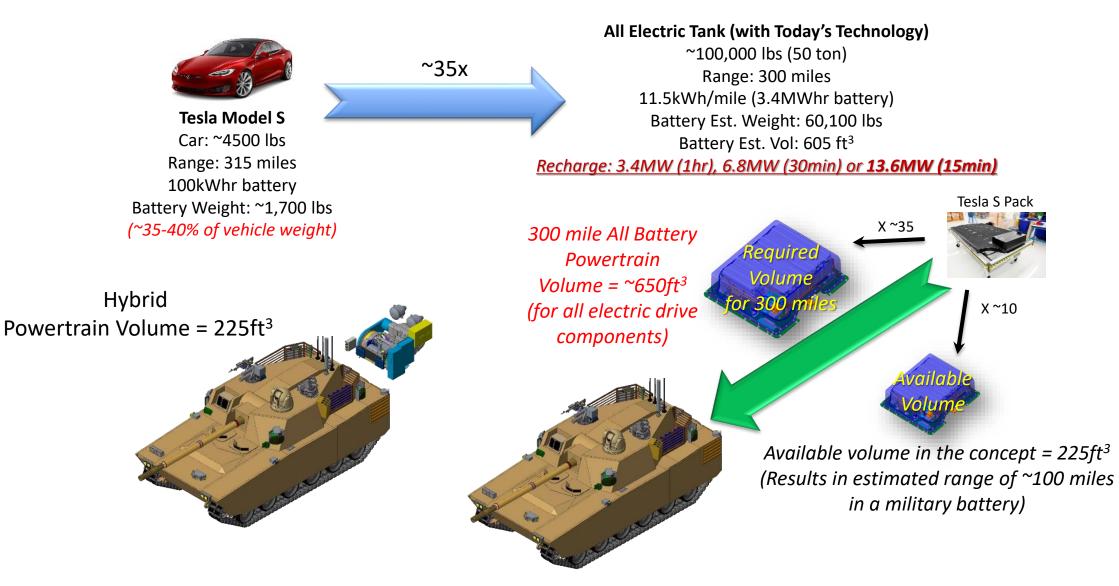
Batter	ry Wt **						Ve	hicle We	eight (Tor	ns)	•		•	•	
(lbs)		5	10	15	20	25	30	35	40	45	50	55	60	65	70
	50	314	628	942	1256	1569	1883	2197	2511	2825	3139	3453	3767	4080	4394
	100	628	1256	1883	2511	3139	3767	4394	5022	5650	6278	6905	7533	8161	8789
Miles	150	942	1883	2825	3767	4708	5650	6591	7533	8475	9416	10358	11300	12241	13183
Ĭ	200	1256	2511	3767	5022	6278	7533	8789	10044	11300	12555	13811	15066	16322	17577
	250	1569	3139	4708	6278	7847	9416	10986	12555	14125	15694	17263	18833	20402	21971
	300	1883	3767	5650	7533	9416	11300	13183	15066	16949	18833	20716	22599	24482	26366

Assumption: Vehicle weight includes base vehicle and battery weight (i.e. 35 ton vehicle would include vehicle plus ~7000lb battery for 50 mile range) ESS weight:

Battery Volume (ft³)(as a function of vehicle weight and range):

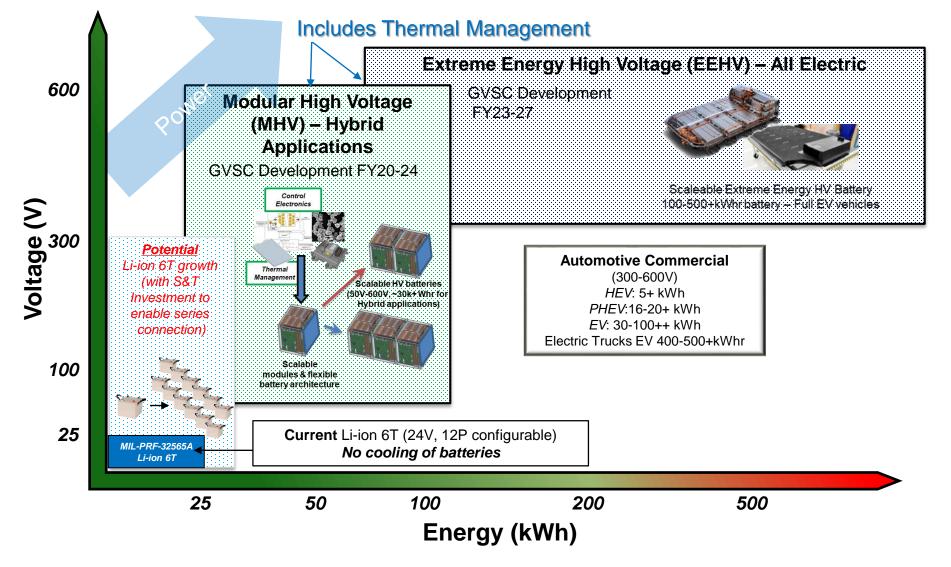
~19k lbs (~9.5 tons)

Patton	() (f+2)		-	-	•	•	Ve	ehicle We	eight (Tor	ns)	•				
Battery	vol (ft3)	5	10	15	20	25	30	35	40	45	50	55	60	65	70
	50	4	9	13	18	22	27	31	36	40	45	49	54	58	63
	100	9	18	27	36	45	54	63	72	80	89	98	107	116	125
Miles	150	13	27	40	54	67	80	94	107	121	134	148	161	174	188
Ξ	200	18	36	54	72	89	107	125	143	161	179	197	215	233	250
	250	22	45	67	89	112	134	157	179	201	224	246	268	291	313
	300	27	54	80	107	134	161	188	215	241	268	295	322	349	376

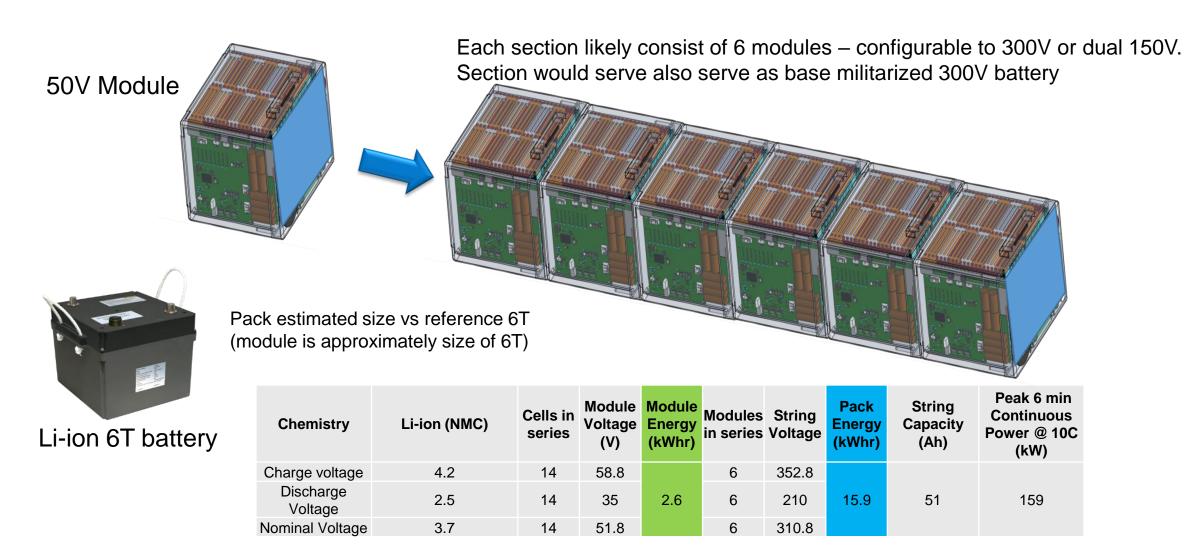

Assumption: Available battery volume 225ft³ – color code based on that volume restriction

Next Generation Battery Estimates: Specific Energy: 400Whr/kg [181.4Whr/lbs] Specific Power: 450Whr/L [12,735Wh/ft³] *ESS Vol:* ~268ft³ (~7.6k liters)

ALL ELECTRIC TANK FEASIBILITY (HYBRID VS. FULL E-TANK)



To meet unique military requirements including Navy Safety certification, standardized/scalable military batteries are needed

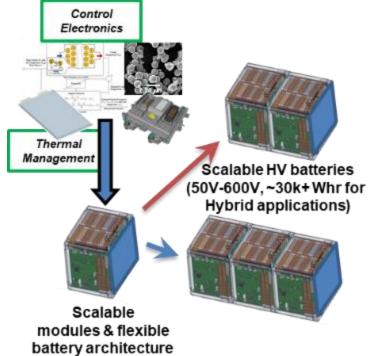


DISTRIBUTION A. See first page.

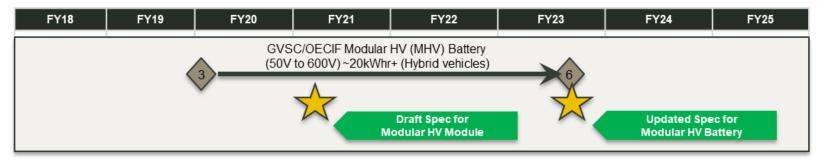
CONCEPT FOR STANDARDIZED 300V BATTERY SECTION

For more info:

Branch Chief



DISTRIBUTION A. See first page.


MODULAR HIGH VOLTAGE (MHV) OVERVIEW

Key Features: Flexible architecture to accelerate vehicle hybridization

- Voltage: 50 600+V
- Energy: 3 100 kWh
- Scalable modules (~50V) connected in series/parallel for various applications.
- Qualification to occur at the module and section level.
- Some consideration for backward compatibility of current force vehicles
- Full operational capabilities between -30°C to 60°C WITH thermal management.
 Reduced operation down to -46°C or up to 71°C or WITHOUT thermal management.
- Module BMS: provides status and monitoring information for safe operation of pack, built-in tests, diagnostics and cell balancing.
- Pack BMS (likely be GFE to meet unique military requirements). Reports pack status and monitoring info to vehicle digital com buses. Controls of battery thermal management, battery protection and pre-charge/main contactors.

HTUF Webinar

July 23, 2020

PRESENTED BY Jason Gies Director of Business Development NEXT

CONFIDENTIAL and Proprietary to NAVISTAR*

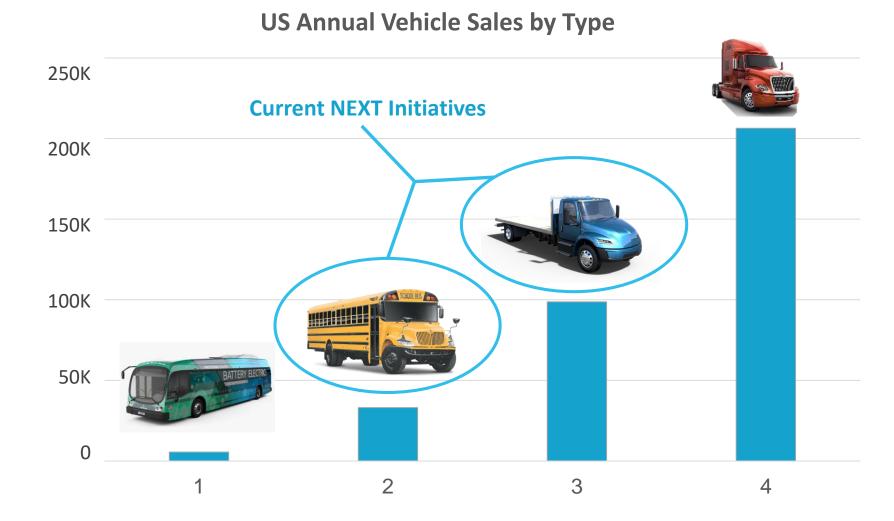
NEXT Technical Center A Detroit based location focused on electrification

An engineering and customer experience center created to support the NEXT business unit. The facility will help guide our customers throughout the EV procurement and implementation process.

Emphasizing:

- Power electronics
- Electric vehicle development
- Controls
- Battery integration
- Analysis
- Next 4C's

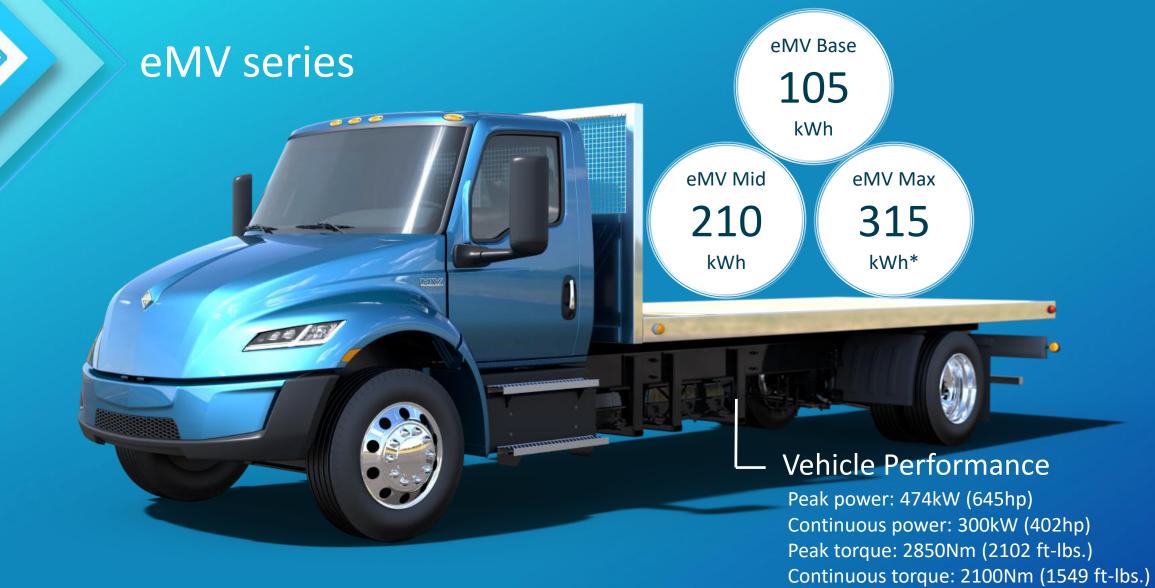
Now Open!



Near to critical suppliers, testing facilities, and engineering talent throughout the EV space

CONFIDENTIAL and Proprietary to NAVISTAR

Commercial Vehicle Market



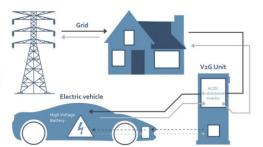
Electric vehicle adoption is already happening with transit buses, but the larger market for electrification is with other commercial vehicles

eMOBILITY SOLUTIONS

Battery Capacity Options

NEXT

Focus Areas



NAVISTAR

Collaboration

EMOBILITY SOLUTIONS

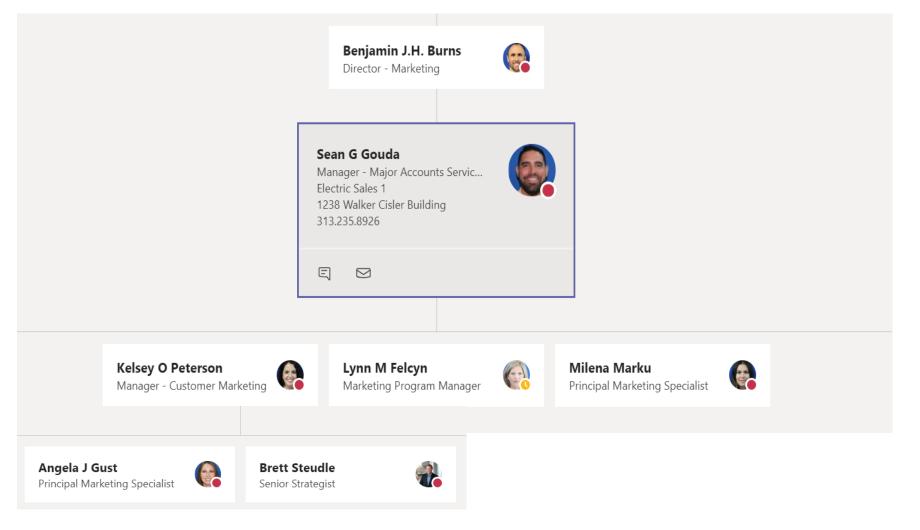
eMOBILITY SOLUTIONS

Thank You!

HTUF: Vehicle Electrification Discussion

Sean Gouda

July 2020

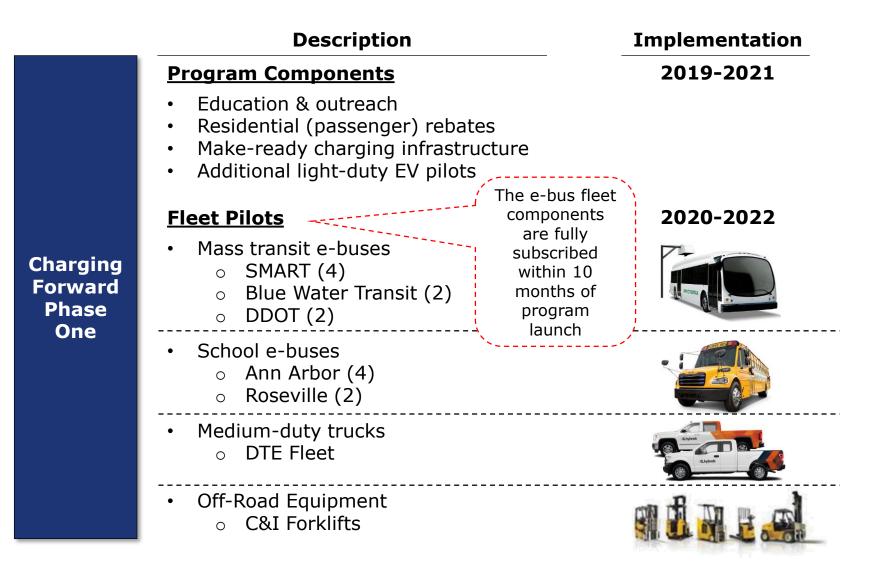


Agenda

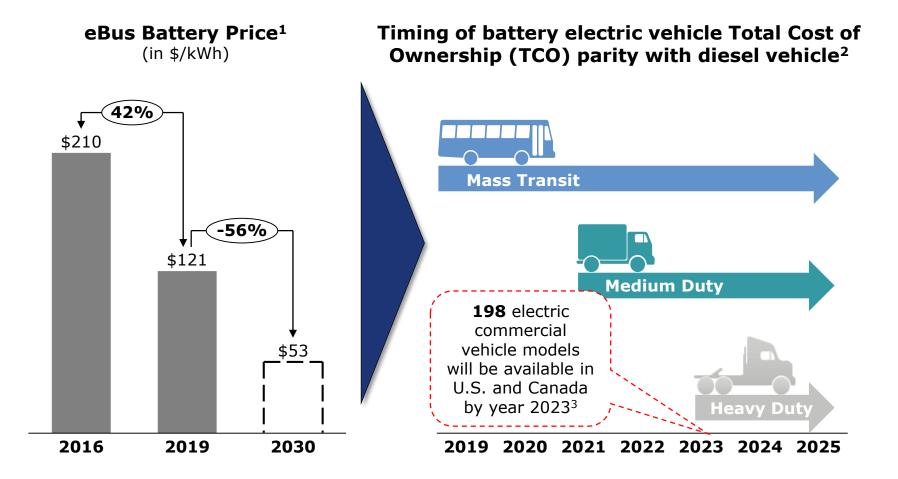
- Provide a current status update on Charging Forward Phase One
- Share an overview of our Charging Forward Phase Two eFleets proposal

DTE Electrification Team

Charging Forward launched in June 2019 and is focused on execution of its three components and additional pilots


	Achievements to Date	Forward Focus
Customer Education & Outreach \$1.8 million Reg Asset	 Executed 33 tactics across 9 channels, reaching ~4M customers Hosted Ride & Drive, creating ~300 EV experiences Integrated EV showroom tool 	 Execution on marketing plan, including addition of 3 new tactics (video, spotify, and digital) Shared mobility partnerships
Residential Rebates \$1.8 million Reg Asset	 Approved 160 rebates Qualified 2 vendors	 Submetering Pilot Grid-Impact Study EV-Ready Builder Rebates
Make-Ready Charging Infrastructure \$3.5 million Capital \$6.8 million Reg Asset	 Approved 36 50-kW DCFCs Approved 140 Level 2 ports Launched ChargeD phase 1 Launched battery-powered DCFC pilot Supporting charging of 8 mass transit e-buses and 6 school e-buses Qualified 5 vendors 	 ~50 125 kW+ DCFC rebates ~850 Level 2 rebates ChargeD phase 2 XFC and DR pilots¹ MAS surveys for Level 2 Governmental light-duty fleets

The all-new EV Showroom tool allows customers to easily discover and compare available EV models


EV Homepage	Charging I	Forward	Elect	ric Pricing	Install	a Charger	Cost Savi	ngs & Benefits		EV Help
lectric Vehic	les									
ompare electric ca	rs by EV range	or price. How	er on the E	EV for more o	details. <u>ht</u>	<u>tps://e</u>	<u>ev.dteen</u>	ergy.co	<u>om/ve</u>	<u>ehic</u>
			Cehicl	le Tiles	R	ange vs. Co	ost			
			10/10/							
Filter		\$200	,000							
FUEL ()		\$180	,000							
	L-ELECTRIC	Se \$160	Augentine.				0			
Nik PLUG	-IN HYBRID	MSRP After Incentives \$140 \$170 \$100 \$80 \$80 \$40 \$40				-	D			
		50 \$120								
ТҮРЕ	Manager Part	\$100 \$100	2							
Sedan	Hatchback		,000							
Coupe	Crossover	800 \$00	,000		THE					
Minivan	SUV	_	,000		the states	AREA		and and		ia.
Wagon	Truck	ΨZO	\$0	-0-0					5-19.41	
	100000		0	100	200	300	400	500	600	70
- <u>11</u>	lect actual					Total Ra	nge (miles)			
hicles displayed may not ref										

We launched Charging Forward Phase One last year and have some key pilots in progress, but we believe there is a need for a more robust fleet program

Current market conditions are rapidly evolving due to declining battery costs and number of commercial EV models coming to market suggesting that the timing is right for utility involvement

1. Source: BloombergNEF

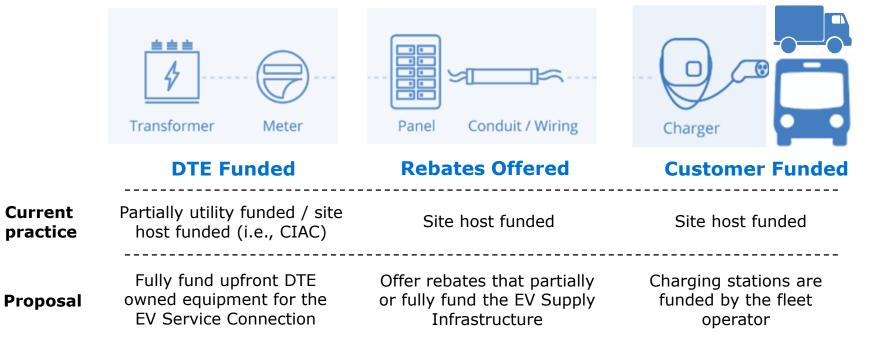
- 2. 2017 McKinsey Center for Future Mobility, Regional and Urban Haul
- 3. Using Calstart's Zero-Emission Technology Inventory tool for reported vehicle availability through 2023 in North America

Fleet electrification benefits many stakeholders, and utilities have an important role to play

Benefits of Fleet Electrification

- Fleet operators: enables operational savings and sustainability goals
- Utility customers: creates affordability benefits by spreading fixed costs over increased (off-peak) sales
- Society at large: reduces emissions and benefits the environment overall

DTE's Role


- Help bring about the benefits of transportation electrification to the public at large
- Efficiently integrate eFleet
 load with the grid
- Improve our understanding of eFleet load and its impact on the grid
- Provide opportunity to pilot integration with new technologies

Phase Two of the program expands Charging Forward into eFleets across five segments

	Mass Transit	Electric School Buses	Medium Duty	Heavy Duty	Off-Road
Education & Outreach	Educat	e commercial and ind Refresh website			of eFleets
Advisory Services		and analyze charging	trial customers	s demand respo	
Make-Ready Charging Infrastructure		de service connection	categories		
<u>Ports</u> DCFC 100 L2 534	25 0	6 51	46 413	23 0	0 70

We will support eFleet charging infrastructure across the five fleet segments through the same rebated make-ready model that Charging Forward uses today

Service Connection Supply Infrastructure Charging Stations

Thank You!

DTE EV Residential Homepage

https://newlook.dteenergy.com/wps/wcm/connect/dte-web/home/servicerequest/residential/electric/pev/plug-in-electric-vehicles-pev

DTE EV Business Homepage

https://newlook.dteenergy.com/wps/wcm/connect/dte-web/home/servicerequest/business/electric/electric-vehicles/plug-in-electric-vehicles-biz

Sean Gouda, CEM DTE Manager Electrification <u>Sean.gouda@dteenergy.com</u> 313-235-8926 313-600-0859

PANEL DISCUSSION

Dr. Laurence Toomey Branch Chief, Energy Storage Team U.S. Army Ground Vehicle Systems Center

Mr. Larry Larimer Director, Futures Integration Directorate, Futures and Concepts Center U.S. Army Futures Command

Mr. Jason Gies Director of Business Development, NEXT E-Mobility Solutions Navistar, Inc.

Mr. Sean Gouda Manager, Electrification Business Development DTE Energy

HTUF- Power Export and Microgrid Planning WG-1 Recap

> 7/23/2020 Jared Schnader National Program Manager

Overview of Working Group

- Sub-group within HTUF
- Focus on developing key pathways and planning items for power export and microgrids on military bases
- WG Members consist of Military Representatives, Utilities, OEMs, and Suppliers, and Engineering Firms

Outcomes

- Identified First Topic Protocols and Safeguards for Cyber Security when plugging into a grid to charge a vehicle
- Next Steps
 - Procure existing protocols
 - Identify commercial partners and organizations that are working in this space
 - Develop relationships and partnerships to create a robust protocol structure for military applications

Next Working Group Meeting

GoToWebinar - August 12th – 1300 EST (1000 PST)

Thank you!

Jared Schnader Jschnader@calstart.org CALSTART

CALSTART

UPCOMING HTUF WEBINARS

August 20th 1:00pm Eastern: How vehicle electrification contributes to microgrids in military and commercial applications

September 17th 1:00pm Eastern: Vehicle cybersecurity and its role in commercial and military technology development

Also: Tune into CALSTART's weekly Clean Commercial Transportation Update webinar – Fridays at 2pm Eastern time https://calstart.org/cctupdate/

THANK YOU

Send us your comments and suggestions

Steven Sokolsky (626) 744-5604 ssokolsky@calstart.org

