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Executive Summary 

While the market for medium- and heavy-duty battery-electric vehicles (MHD EVs) is still nascent, a growing 

number of these vehicles are being deployed across the U.S. This study used over 1.5 million miles of operational 

data from multiple types of MHD EVs across various regions and operating conditions to address knowledge 

gaps in total cost of ownership and operational range. First, real-world energy cost savings were determined: 

MHD fleets should experience energy cost savings regardless of vehicle platform, with the most savings seen in 

transit buses and HD trucks. Second, operational range was modeled given duty cycle, vehicle configuration, use 

case, climate, and terrain, to help fleets across various geographies throughout the U.S. assess the suitability of 

EVs for their operating needs. Finally, this paper suggested considerations for MHD fleets to optimize their 

efficiencies and range based on the model findings. 
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1. Context 

In recent years, the number of medium- and heavy-duty (MHD) electric vehicle (EV) options available on the 

market has significantly increased, up 36% globally since 2021 [1]. However, adoption of MHD EVs has not 

occurred at the same pace due to barriers like high up-front costs and general uncertainty of the ability of EVs to 

meet duty cycle requirements [2]. Research regarding MHD EVs’ performance in real-world deployment settings 

has been scarce [3], and industry stakeholders struggle with a lack of information and data to understand MHD 

EVs’ actual duty cycle suitability, total cost of ownership, and performance in the face of variables like climate, 

terrain, and driving speed. Understanding the in-use energy efficiency of MHD EVs will help fill these knowledge 

gaps and advise on the two major concerns in EV adoption: total cost of ownership and range. 

A preliminary model-based comparison [4] showed that MHD EVs were 2–4 times more energy efficient than 

diesel vehicles, while a 2018 California Air Resources Board (CARB) meta-analysis using data from real 

deployments found that battery-electric trucks and buses were 3–6 times as efficient as diesel counterparts, with 

a vehicle’s precise estimated energy efficiency ratio (EER)1 depending on its vehicle platform and duty cycle, 

 
1 Energy efficiency ratio (EER) is defined as the efficiency of an EV divided by the efficiency of its baseline diesel 

counterpart. 
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with greater efficiency at lower average speeds [5]. Given that electricity is consistently cheaper than diesel per 

unit of energy [6] and that heavier vehicles tend to consume more energy per mile than light vehicles [7], fleets 

switching from diesel to electric MHD vehicles should experience energy cost savings, which helps reduce total 

cost of ownership. This study not only supported these previous model- and data-based findings but also 

estimated the energy cost savings associated with improved efficiency.  

To address users’ uncertainty about real-world EV performance, predictive models have been widely used to 

project EV energy consumption, efficiency, and range and to understand their determinants and trade-offs (Table 

1). Previous research successfully adopted simulation-based models, machine learning models, and neural 

networks for light-duty EVs and identified features that most strongly impacted vehicle efficiency to guide fleets’ 

actions. These methodologies can be applied to MHD EVs to better understand the key determinants of vehicle 

efficiency under real-world physical conditions. Findings can help ease fleet uncertainty on EV adoption before 

procurement and improve MHD EV efficiency in operation. 

Table 1: Previous research modeling energy efficiency of light-duty EVs 

Literature Model Features that significantly impacted light-duty energy efficiency 

Qi et al. 2017 [8] PCA, decision tree, ANN Negative kinetic energy, positive kinetic energy, speed, traffic 

Fetene et al. 2017 [9] Regression 
Speed, acceleration, trip distance, season, rush hour, battery level when trip 

starts, temperature, precipitation, wind speed, visibility 

Modi et al. 2019 [10] CNN 
Significant features not specified, but the selected model used features: 
speed, road elevation, tractive effort 

Weiss et al. 2020 [11] Regression Vehicle weight 

Xu et al. 2020 [12] Simulation based inference model Speed, road type 

Ahmed et al. 2022 [13] Regression Speed, acceleration, vehicle weight 

The Medium- and Heavy-Duty Electric Vehicle Data Collection project, funded by the U.S. Department of 

Energy (DOE), collected data from a variety of MHD vehicles and made it publicly available for researchers. 

Using this diversified and robust vehicle performance dataset from 107 vehicles across six vehicle platforms and 

eight U.S. states, this study (1) compared the energy costs of MHD EVs and their conventional diesel internal 

combustion engine (ICE) counterparts; (2) generated a machine learning model to predict energy efficiency and 

highlight significantly impactful features; and (3) applied the model to predict operational range for transit bus 

in four cities and HD truck in local and regional duty cycles. 

2. Data Collection and Preparation 

Onboard data loggers, either from third party suppliers or pre-installed by vehicle manufacturers, were used to 

collect data directly from vehicles’ Controller Area Network. Data was aggregated by day or by trip, depending 

on the data logger’s frequency of reporting. Table 2 and Fig. 1 summarize the makeup, status, and geographic 

distribution of the on-road vehicle dataset. 

Data needed for the energy cost savings analysis was gathered from external sources. Baseline diesel average 

fuel economy values were sourced by taking the average of all fuel economy values corresponding to each vehicle 

platform from (1) CALSTART’s TCO tool [4] and (2) the U.S. DOE Alternative Fuels Data Center’s average 

fuel economy dataset [14], where available. The price of diesel ($/gallon) was gathered from the U.S. Energy 

Information Administration’s (EIA) diesel price forecast dataset [15]. The price of electricity ($/kilowatt-

hour(kWh)) was gathered from (1) the EIA’s electricity price forecast dataset [15] and (2) levelized costs of 

delivered electricity of $0.17–$0.38 per kWh estimated by the National Renewal Energy Laboratory (NREL) 

given a set of 20 scenarios, ranging from kilowatt- to megawatt-scale charging and accounting for variations in 

location type, utilization rate, cost of Electric Vehicle Supply Equipment (EVSE) installation and upgrades, and 

various utility rates [16]. 
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Table 2: Vehicles included in the following analysis 

Vehicle Platform 
Gross Vehicle Weight 

Rating (lbs) 

Number of Vehicles  

in Analysis 

Number of Vehicle-Days  

in Analysis 

Transit Bus > 33,000 56 19,799 

Type C School Bus > 33,000 16 1,681 

Class 8 Day Cab Tractor > 33,000 14 1,269 

Class 7 Box Truck 26,001–33,000 5 652 

Class 6 Box Truck 19,501–26,000 6 2,025 

Class 4 Step Van 14,001–16,000 10 1,298 

Total  107 26,724  

 

 

Figure 1: Map of MHD EV deployments included in this study; marker radius indicates vehicle count 

Some data parameters corresponding to input features for the efficiency model in Section 3.2 were not directly 

collected by onboard data loggers; in these cases, data was downloaded from external sources (Table 3). 

Table 3: Features as inputs to the energy efficiency predictive model 

Feature Groups Features Sources 

Duty Cycle 
Average Driving Speed, Total Distance, Total Run 

Time, Driving Time, Idling Time Percentage 
MHD EV Data Collection (CALSTART, 2023) 

Vehicle Configuration 

Manufacturer, Model Name, Model Year, Weight 
Class, Vehicle Platform, Body Style, Rated 

Energy, Nominal Range, Estimated Payload 

MHD EV Data Collection (CALSTART, 2023); 

ZETI Database (CALSTART, 2023) [25] 

Use Case Vocation, Sector MHD EV Data Collection (CALSTART, 2023) 

Geography Region, State MHD EV Data Collection (CALSTART, 2023) 

City Profile 

Climate 
Average Ambient Temperature, Average 

Precipitation 
ERA-5-Land hourly dataset [19]; NLDAS-2 hourly 

dataset [18]; NOAA daily average temperatures [17] 

Road Average Road Grade 
R package slopes [23] applied on OpenStreetMap 

network [21] 

Congestion Annual Hours of Delay (general, highway) 
Urban Mobility Report Congestion Data (Texas 

A&M Transportation Institute, 2021) [20] 

For each vehicle in the dataset, a climate profile consisting of temperature and precipitation data was gathered. 

When not collected by onboard data loggers, daily average ambient temperatures were downloaded from the 

National Oceanic and Atmospheric Administration (NOAA) [17]. Trip-level temperatures were downloaded 

from the National Aeronautics and Space Administration’s (NASA) NLDAS-2 dataset [18] at the midpoint 

location and time of the trip. Hourly precipitation was downloaded per city for 2018–2022 from the ERA-5-Land 

hourly dataset [19] and summed by day or trip, depending on the granularity of the corresponding vehicle’s data. 

Annual congestion data from 2019 was used to avoid the impact of the COVID-19 pandemic [20]. The metric 

annual hours of delay was used for buses while annual truck hours of delay was used for trucks. For cities not 

covered by the dataset, metrics were collected for the city’s nearest neighbor by physical distance.  
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City road slope was computed using road network data from Open Street Map [21], 1 arc-second Digital Elevation 

Model from the U.S. Geological Survey (USGS) TNM database [22], and the R package slopes [23]. Road grade 

for each road segment in each city was computed as an aggregated mean.  

Since actual payload data was not available, maximum payload per vehicle model was obtained from 

CALSTART’s Zero-Emission Technology Inventory (ZETI) database [24], which contains vehicle specification 

data for 839 models of MHD trucks and buses [25]. When payload was measured in units other than weight (e.g., 

passengers or volume), they were converted to weight [26].  

3. Real-world Energy Efficiency Analysis and Implications 

3.1. Energy efficiency advantages indicate energy cost savings 

In this study, energy cost was defined as the cost of fuel in U.S. dollars needed to drive a vehicle one mile.  

Maintenance costs were not included due to a lack of sufficient historical maintenance data to accurately assess 

EVs’ longer-term maintenance needs. Fig. 2 below shows the analysis procedure. 

Figure 2: (a) Efficiency comparison analysis procedure and (b) energy cost savings analysis procedure 

3.1.1.   Efficiency comparison 

First, a comparison of energy efficiency between each EV platform and its diesel counterpart was conducted (Fig. 

2a). MHD EVs performed an average of 3.4–5.7 times as well as their conventional counterparts, mirroring 

CARB’s estimated EER results [5] (Table 4). HD trucks and transit buses had the highest estimated EERs, while 

MD trucks and school buses—the most efficient vehicle platforms for both fuel types—had lower EERs. Vehicle 

platforms maintained similar efficiency rankings relative to each other regardless of fuel type, aside from Class 

8 trucks, which were the least efficient diesel vehicles but second least efficient EVs.  

Table 4: Average and 95% confidence interval of energy efficiency by vehicle platform 

Vehicle Type Vehicle Platform 
Average EV Energy Efficiency 

(MPDGe) 

Average Baseline Fuel 

Economy (MPDG) 

Energy Efficiency Ratio 

(EER) 

Medium-Duty Truck 
Class 4 Step Van 34.2 (± 0.023) 9.04 3.8 

Class 6 Truck 28.2 (± 0.005) 8.21 3.4 

Heavy-Duty Truck 
Class 7 Truck 18.6 (± 0.050) 4.40 4.2 

Class 8 Truck 20.1 (± 0.013) 3.56 5.7 

Bus 
Type C School Bus 27.4 (± 0.034) 7.06 3.9 

35–40 ft Transit Bus 20.1 (± 0.009) 3.83 5.2 

3.1.2.   Energy cost savings comparison 

For each vehicle platform, average energy cost savings per mile were (1) projected from 2021–2035 using EIA 

price projections [15] and (2) calculated using the average levelized electricity costs estimated by NREL [16] 
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with 2022 diesel price projections [15] (Fig. 2b). Together, these complementary sources of electricity prices 

presented a more nuanced understanding of EVs’ energy costs: while the EIA source provided price projections 

on a per-year basis over a broad time period, NREL’s estimates, despite their lack of temporal granularity, 

accounted for the real-world variability of charging costs associated with 20 diverse charging infrastructure 

scenarios.  

In 2022, EV buses and trucks had an average cost savings of $0.365 per mile and $0.343 per mile, respectively; 

by 2035, projected bus and truck per-mile cost savings increase slightly to $0.413 per mile and $0.387 per mile, 

respectively (Fig. 3a). 

 

Figure 3: Estimated fuel cost savings over time (a) per mile by truck and bus and (b) annual total by vehicle platform. 

Annotations indicate 2022 and 2035 cost savings estimates. 

In a single-year cross-section of these results, energy cost savings were smaller when using electricity prices 

based on NREL’s breakeven costs relative to the EIA’s national average electricity price projections. However, 

for both estimates, the average cost per mile was consistently lower for EVs than for baseline vehicles. Thus, 

even when accounting for the installation and upkeep of EVSE infrastructure, fueling MHD EVs is still less 

expensive per mile on average than fueling their diesel counterparts.  

Finally, for each vehicle platform in the real-world dataset, estimated total annual cost savings were determined 

using EIA-projected average cost per mile and average annual distance traveled per vehicle in each vehicle 

platform (Fig. 2b). Because of the combination of their high per-mile fuel cost savings and high annual distance 

traveled, transit buses and HD trucks have high estimated annual fuel cost savings (Fig. 3b). Transit buses, which 

had the highest per-vehicle average annual mileage (8,717 miles per year), experienced the greatest fuel cost 

savings, followed by Class 8 and Class 7 trucks, which had local/regional duty cycles and traveled an average of 

5,817 and 7,412 miles per year, respectively. These results support previous DOE findings that a vehicle’s duty 

cycle strongly impacts total cost of ownership [27]: although school buses were much more efficient than transit 

buses, their lower annual average distance (1,693 miles) resulted in much lower average annual fuel cost savings. 

Thus, switching from diesel to electric is more cost-effective for higher-mileage than lower-mileage vehicle 

platforms. 

3.2. Energy efficiency prediction based on known real-world factors 

Many factors affect actual EV efficiency, including ambient temperature, driving speed, topography, and 

manufacturing configurations. However, studies determining these variables’ relative impacts are lacking. This 
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paper incorporated real-world data from these factors and developed machine learning models on in-use 

performance data to estimate energy consumption rate (kWh/mi). 

3.2.1. Model selection and feature engineering 

Knowing the mechanisms that affect vehicle efficiency can inform fleets’ operations by predicting efficiency 

performance and ultimately range. When selecting from a wide array of machine learning algorithms, we 

considered the tradeoff between interpretability and performance. On one end of the spectrum, linear models are 

the most interpretable but are generally weak in predictive performance, especially when dealing with high-

dimensional data and non-linear relationships. On the other end, neural networks can achieve higher predictive 

performance at the expense of high computation costs and low interpretability, as they are essentially “black box” 

models. Tree-based algorithms stood out to best fit our use case, as they offer a balance between interpretability 

and predictive performance.  

Before training the machine learning models, exploratory data analysis and feature engineering were conducted 

to select and transform 22 features as inputs to the models (Table 3). Fig. 4 illustrates the feature engineering 

procedure. Since vehicle types and regions were imbalanced in the data, we applied stratified sampling when 

splitting train and test data and SMOGN resampling [28] on the training data to ensure model performance. 

 

Figure 4: Feature engineering procedure on train and test datasets 

3.2.2. Model training and performance 

The study applied five algorithms to predict vehicle efficiency, calculated as total energy consumption divided 

by driving distance and measured by energy consumption rate (kWh/mi). Using Scikit-Learn [29] and other 

Python packages to train, tune, perform k-fold cross-validation on the model. Mean Absolute Error (MAE) was 

the key evaluation metric in training, while other common metrics are also provided in Table 5. Among the five 

models, tree models (XGBoost, Random Forest, and Gradient Boosted Trees (GBR)) had better performance than 

linear models (Lasso and Ridge Regression). The GBR model had the highest R2 value (77%) and was selected 

as the best model to predict operational range. 

Table 5: Model performance metrics 

Regression Models R2 
Mean Absolute 

Error (MAE) 

Mean Squared 

Error (MSE) 

Root Mean Squared 

Error (RMSE) 

Lasso (L1 Regularization) 0.486414 0.426722 0.413611 0.643126 

Ridge (L2 Regularization) 0.519174 0.403068 0.387229 0.622277 

XGBoost (XGB) 0.751825 0.249201 0.199865 0.447063 
Random Forest (RFR) 0.761570 0.242875 0.192017 0.438198 

Gradient Boosted Trees/Gradient Boosting (GBR) 0.772317 0.226611 0.183362 0.428208 
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3.2.3. Model result analysis 

Preliminary analysis indicated that MHD EVs were most efficient when operated at daily average speeds between 

20–40 mph compared to lower speeds. At speeds below 20 mph, a higher percentage of idling time versus drive 

time was observed, which likely contributed to worse efficiency. This analysis also indicated that MHD EVs 

driving more than 100 miles per day achieved a higher average efficiency than those traveling less. Again, a 

higher percentage of idling time was observed in shorter trips resulting in worse efficiency. The ideal operating 

environment included minimal traffic, mild to warm ambient temperatures (50–80 °F) [30], and relatively flat 

terrain. Lastly, decreases in the vehicle size and weight significantly increased vehicle efficiency.  

While these results were not unexpected, further analysis revealed the most important factors in the GBR model 

by using the SHAP (Shapley Addictive exPlanations) value [31], which shows the effect each feature has on 

predicting efficiency (Fig. 5). Clear horizontal separation (red dots on one side and blue on the other) shows the 

direction and magnitude of the impact each feature has on the output. For example, high driving speed values had 

a negative effect on the output (kWh/mi) and thus are associated with improved efficiency. Among the top 

features, average driving speed, congestion hour delay, ambient temperature, total distance, driving time, and 

idling time percentage had clear patterns. In contrast, features like model year, precipitation, total run time, road 

grade, and nominal range were in the top 20 features but did not show a clear pattern. 

 

Figure 5: Gradient Boosted Trees Model top features ordered by feature importance (left: beeswarm plot; right: bar plot) 

All tree models achieved similar R2 scores (75–77%). Each model’s feature importance ranking was slightly 

different, but all three models included average driving speed, average ambient temperature, and total distance in 

their respective top five (Table 6).  

Table 6: SHAP identified top features impacting the prediction on energy efficiency 

 

 

 

 

Average driving speed was consistently the most important feature across all models, meaning it had the biggest 

effect on efficiency. Energy efficiency of transit buses became less optimized with high variations when average 

driving speed is lower than 10 mph. (Fig. 6). Heavy-duty trucks were more likely to have energy efficiency as 

high as 4 kWh/mile when average driving speed was less than 15 mph. However, for both vehicle types, when 

average speed reached 20–40 mph, the efficiency converged to a narrow range of values and stabilized around 

1.5–2 kWh/mi. 

The average driving speed feature was aggregated by day, which must be understood within the context of fleet 

operations. Real-world driving over a day involved a variety of speeds. Lower average speed may indicate a 

Top Features Gradient Boosted Trees Random Forest XGBoost 

Average driving speed #1 #1 #1 

Congestion hour delay #2 #4 #5 

Average ambient temperature #3 #2 #2 

Total distance #4 #3 #3 
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larger share of driving in urban congested areas with frequent or longer stops. From the results, a daily average 

speed of 20–40 mph may imply a duty cycle with fewer stops and less traffic or loading time, and MHD trucks 

operating were observed to achieve higher energy efficiency. Future studies on MHD EVs may tailor efforts to 

further understand mechanisms behind their energy efficiencies at different speeds. 

  

Figure 6: Scatter plot of energy efficiency and daily average driving speed for HD Truck and transit bus 

3.3.   From efficiency prediction to operational range 

It is critical for fleets to assess how MHD EVs will accommodate their operations and duty cycle needs when 

planning procurement. The efficiency model was used to address this issue by predicting and visualizing the 

operational range of MHD EVs based on hypothetical operating conditions, manufacturer-rated battery 

capacities, and an assumed 90% SOC battery buffer (Equations 1 and 2). Vehicles were assumed to be brand new 

and operating at full State of Health. Predicted operational range values can help gauge the maximum range a 

vehicle might achieve in the real world versus manufacturer specification.   

Operational range (mi) = Usable battery capacity (kWh) / Energy efficiency (kWh/mi)     (1) 

Usable battery capacity (kWh) = Nominal battery capacity (kWh) * Battery State of Health (%) * State of Charge buffer (%) 

            (2)  

We used the model developed in Section 3.2 to predict operational range for three different vehicle types (i.e., 

transit bus, local HD truck, regional HD truck) in four different cities (i.e., Los Angeles, Louisville, Missoula, 

Chicago). BYD K9M 2022 was used for transit buses while Freightliner eCascadia 2021 was chosen for local 

and regional HD trucks. One year of operation was simulated (Table 7) to predict the energy efficiency. Using 

our real-world data as a benchmark, we summarized monthly and weekly averages of daily total distance, total 

run time, and driving time for these vehicle types. For each pair of month and day of week, 200 data points were 

simulated using the averages and standard deviations of residuals, assuming a normal distribution. For each day 

in 365 days, one data point was randomly sampled from the pool of 200 data points based on day of week and 

month. Forecasting was used if data was missing or underrepresented. Daily average driving speed and idling 

time percentage were calculated from the simulated features. All duty cycle features were engineered and 

validated to have similar ranges and distributions as the real-world data.  

Table 7: Averages and 95% confidence intervals of simulated duty cycle features 

Vehicle Type 
Total distance 

(miles) 

Driving time 

(hours) 

Total run time 

(hours) 

Average driving 

speed (mph) 

Idling time 

percentage (%) 

Transit bus 83.5 (±3.8) 5.6 (±0.2) 8.4 (±0.4) 15.6 (±0.7) 25.2 (±2.6) 

Local HD truck 45.3 (±1.4) 2.8 (±0.1) 4.1 (±0.2) 18.0 (±0.9) 28.5 (±2.0) 
Regional HD truck 71.3 (±4.0) 3.2 (±0.2) 4.3 (±0.2) 22.7 (±1.3) 23.3 (±1.5) 
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In simulated duty cycles, transit buses traveled the farthest with the longest run time and driving time but the 

lowest daily average driving speed due to frequent stops or residential speed limits. Local HD trucks traveled the 

shortest distance with the shortest driving time and highest idling time percentage. Regional HD trucks traveled 

long distances with the highest speed and lowest idling time percentage. Regional HD trucks spent a greater 

fraction of time driving, indicating that they travel on highways and have fewer stops.  

Table 8: Profiles of four U.S. cities 

City 
Average ambient 

temperature (℉) 

Precipitation 

(inches) 

Congestion hour delay 

(hours) 

Average road 

grade (%) 

Los Angeles, CA 65.7 (±1.0; 46-86) 0.002 (±0.0004) 952,183,000 2.1 

Louisville, KY 59.6 (±1.7; 22-86) 0.006 (±0.0005)   30,610,000 1.7 

Missoula, MT 41.8 (±1.6;  6-74) 0.003 (±0.0002)     2,263,000 1.4 
Chicago, IL 53.2 (±2.0; 10-85) 0.005 (±0.0005) 331,657,000 0.5 

For transit buses, operational range was modeled across cities with different climates, congestion levels, and 

hilliness (Table 8, Fig. 7). Congestion and hilliness were constant throughout the year while climate variables 

changed seasonally. Average ambient temperature had the strongest impact on operational range. The transit bus 

in Los Angeles, with the warmest winters, showed the most consistent operational range throughout the year, 

despite a high congestion hour delay that was 30 times that of Louisville. The operational range of the transit bus 

in Missoula dropped significantly in cold winter months, during which average ambient temperature fell as low 

as 6 ℉. In summer, when ambient temperature was no longer the limiting factor, transit buses in Missoula had a 

longer average operating range than in the other regions, likely due to Missoula’s light traffic.  

 

Figure 7: Transit Bus year-round operational range estimations in four U.S. Cities (Vehicle model: BYD K9M 2022; top 

left: Los Angeles, CA; top right: Louisville, KY; bottom left: Missoula, MT; bottom right: Chicago, IL) 

The comparison between the local HD truck and the regional HD truck highlighted the impact of duty cycle on 

operational range. Due to lower daily average driving speed, shorter total distance, and higher percentage of 

idling time, local HD trucks consistently had a lower operational range throughout the year. This could be a result 

of local HD trucks operating in urban areas and thus spending more time idling or in traffic. From the model 
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estimates, local HD truck fleets might even need to deploy trucks with a nominal range nearly double the expected 

daily range to meet duty cycles in colder months. While the same truck model had better range as a regional HD 

truck overall, there were still days when range dropped to about 60% of the nominal range. In summary, fleets 

need to be prepared for these rare occasions when transitioning to a fully electric fleet.   

 

Figure 8: HD Truck Year-round operational range estimations in Louisville, KY  

(Vehicle model: Freightliner eCascadia 2021; left: local duty cycle; right: regional duty cycle) 

4. Conclusion 

As EV adoption grows, the value of a publicly accessible operational dataset from early MHD EV deployments 

will only increase. This study made use of such a dataset to provide a high-level understanding of energy cost 

savings across various types of MHD EVs. A novel approach employing the predictive power of machine learning 

to model MHD EVs’ energy efficiency was also executed. The outcome of this analysis could help fleets across 

various geographies throughout the U.S. assess the suitability of EVs for their operational needs. 

MHD EVs were found to perform an average of 3–6 times as efficiently as their diesel ICE counterparts, 

demonstrating that theoretical efficiency advantages associated with EVs hold true in practice. By using EVs 

instead of diesel vehicles, fleets should experience energy cost savings, regardless of vehicle platform, with the 

greatest savings seen in transit and HD truck fleets, especially those with high-mileage duty cycles.  

This study found that a vehicle’s operational range could be substantially lower than its nominal range in 

conditions with low temperatures, high congestion, hilly terrain, and local duty cycles, so it highlighted the 

importance to estimate operational range when choosing a MHD EV. Using the efficiency model presented in 

Section 3.2, fleets can evaluate a vehicle’s real-world operational range to determine whether it meets their duty 

cycle needs. Based on these results, there are two notable considerations that fleets should take into account 

before purchasing MHD EVs.  

1. Because temperature can significantly impact vehicle efficiency and range, fleets should account for reduced 

operational range in colder months. In Missoula, operational range for transit buses decreased by 30% in 

winter relative to summer. 

2. Due to variations in duty cycle characteristics, local haul operations (less than 100 miles daily) can have 

25% lower operational range than regional haul (100-300 miles daily) despite using the same vehicle model 

in the example city. Accordingly, local HD truck fleets might need to deploy trucks with a nominal range 

nearly double the expected daily range to meet more extreme duty cycle conditions. 

While this study addressed several critical issues for fleets, it also had limitations. The energy cost savings 

analyses were based on average efficiency values, average miles driven for vehicle platforms, and average price 

estimates, and EIA fuel prices did not account for EVSE installation or maintenance costs. As a result, an 
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individual vehicle may experience a different real-world efficiency and different cost savings. Additionally, 

demand charges for electricity and vehicle efficiency improvement rates can be incorporated into scenario 

analyses in the future. When modeling energy efficiency, predictions for trucks were limited to local and regional 

haul (less than 300 miles per day) and were not generalized to long-haul duty cycles. Compared to route-based 

energy consumption modeling, our model required less granular inputs, both in terms of time (i.e., duty cycle at 

vehicle-day level) and geography (i.e., city served as the geographic area of operation for all climate inputs). The 

energy efficiency model is therefore best used to quickly estimate a vehicle’s efficiency in a given city or compare 

a vehicle’s performance across cities or duty cycles. However, the model can still be improved with additional 

computational resources and data. Incorporating more features and more detailed features would enable better 

predictions. For example, using actual cargo weight, rather than a maximum payload constant for each vehicle 

model, would improve the payload feature’s explanatory power, especially for trucks. Similarly, incorporating a 

targeted route as an input would provide details about actual road grade and traffic level that are not decipherable 

from city-level approximations (i.e., average road slope and congestion level).  

Future work can use the output of the efficiency model to understand energy costs for fleets given their selected 

vehicle model, use case, and city profile. Finally, we plan to build a user-friendly, web-based tool making use of 

the model to help fleets predict operational capabilities of MHD EVs operating in their regions, thus boosting 

fleets’ confidence in the EV transition. This tool will be a resource for accelerated MHD EV deployment: by 

addressing EV performance knowledge gaps in an intuitive, accessible manner, it will enable a better 

understanding of real-world MHD EV efficiency and range among fleet managers, policymakers, and the public. 
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